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RESUMO 

ISHIBE, E. I. Aprendizado de características para classificação de imagens de 

ressonância magnética da doença de Alzheimer. 2022. 67 f. Trabalho de conclusão de 

curso (MBA em Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e 

de Computação, Universidade de São Paulo, São Carlos, 2022. 

 

A doença de Alzheimer é um mal que aflige milhares de pessoas ao redor do mundo. 

Sendo até o momento incurável e suas causas ainda incompreendidas, a detecção e 

tratamento precoce se tornaram as maiores aliadas no seu combate. Um método para se 

detectar a presença da doença é através da análise de imagens de ressonância magnética 

do cérebro, contudo, ainda depende muito da experiência do examinador. Para isso é 

treinada uma rede neural convolucional para classificar imagens de ressonância 

magnética de cérebros com doença de Alzheimer, predizendo não só se o paciente está 
sadio (non demented), mas também em um dos 3 estágios da doença (mild demented, very 

mild demented ou moderate demented). Seis redes rasas e criadas do zero são treinadas a 

partir do aumento de dados de um conjunto de dados público, desbalanceado e rotulado 

de imagens de ressonância magnética de diferentes fatias horizontais do cérebro. Aquela 

que apresentou melhor acurácia é comparada a uma linha de base consistindo de um 

classificador (SVM) treinado com um vetor de características extraído de um ResNet-50 

usando os mesmos dados de treinamento. A rede rasa final obteve uma acurácia de 78,5% 

para o conjunto de teste contra 49,80% da linha de base, além de superá-la na classificação 

de cada uma das 4 classes. Observou-se também que a técnica de aumento de dados 

mitigou o problema de desbalanceamento das classes e que o dropout aumentou em 

8,05% na acurácia do conjunto de teste. Assim, foi possível treinar uma rede neural 

convolucional capaz de predizer o estágio da doença de Alzheimer a partir de imagens de 

ressonância magnética de cérebros com acurácia maior que a linha de base definida e com 

uma ligeira dificuldade de classificação da doença nos seus estágios inicias (mild 

demented e very mild demented), condizendo com a dificuldade enfrentada por médicos 

em seus diagnósticos. 

 

Palavras-chave: Redes neurais; Doença de Alzheimer, Ressonância magnética. 

  



 
 

ABSTRACT 

ISHIBE, E. I. Feature learning for classification of Alzheimer's disease magnetic 

resonance images. 2022. 67 f. Trabalho de conclusão de curso (MBA em Inteligência 
Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação, Universidade 

de São Paulo, São Carlos, 2022. 

 

Alzheimer's disease is an illness that afflicts thousands of people around the world. Being 

so far incurable and its causes still not understood, early detection and treatment have 

become the greatest allies in its fight. One method to detect the presence of the disease is 

through the analysis of magnetic resonance images of the brain, however, it still depends 

a lot on the examiner’s experience. For this, a convolutional neural network is trained to 

classify magnetic resonance images of brains with Alzheimer's disease, predicting not 

only whether the patient is healthy (non demented), but also in one of the 3 stages of the 

disease (mild demented, very mild demented, or moderate demented). Six shallow 

networks created from scratch are trained from the data augmentation of a public, 

unbalanced, labeled dataset of MRI images of different horizontal slices of the brain. The 

one that showed the best accuracy is compared to a baseline consisting of a classifier 

(SVM) trained with a feature vector extracted from a ResNet-50 using the same training 

data. The final shallow network achieved an accuracy of 78.5% for the test set versus 

49.80% for the baseline, and outperformed it in classifying each of the 4 classes. It was 

also observed that the data augmentation technique mitigated the class imbalance problem 

and that dropout increased the accuracy of the test set by 8.05%. Thus, it was possible to 

train a convolutional neural network capable of predicting the stage of Alzheimer's 

disease from brain MRI images with an accuracy greater than the defined baseline and 

with a slight difficulty in classifying the disease in its early stages (mild demented and 

very mild demented), consistent with the difficulty faced by physicians in their diagnoses. 

 

Keywords: Neural networks; Alzheimer’s disease; Magnetic resonance imaging.  
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1 INTRODUÇÃO 

1.1 Contextualização 

Em 2003, o Prêmio Nobel em Fisiologia ou Medicina foi concedido ao químico Paul C. 

Lauterbur e ao físico Sir Peter Mansfield devido a descoberta da captura de imagem de 

ressonância magnética (MRI, do inglês Magnetic Resonance Imaging) [1]. Essa técnica, que 

consiste na produção de campos magnéticos para a detecção de moléculas de água, permitiu a 

visualização de estruturas e funções do corpo humano em um nível de detalhe nunca observado 

anteriormente e é considerado um dos avanços mais importantes na medicina no século [2].  

Com a teoria desenvolvida por Lauterbur e Mansfield desde 1971 [3], foi possível, em 

1989, a patente scanner de MRI por Raymond Damadian [4]. Tal equipamento é capaz de 

produzir imagens tridimensionais detalhadas dos tecidos e órgãos. E essas imagens, além de 

proporcionarem um melhor conhecimento do corpo humano, também possuem um papel 

importante no diagnóstico e tratamento de doenças como na detecção de esclerose múltipla e 

câncer [1]. 

É notável a importância do MRI na medicina, assim como apontam os dados de [5], [6] 

e [7] em que se pode ver que o número de exames e scanners só tem aumentado com o tempo. 

Uma das aplicações do MRI na medicina é o seu uso em avaliações clínicas de pacientes com 

suspeita de Alzheimer [8]. 

O primeiro caso relatado da doença de Alzheimer foi em 1906 pelo psiquiatra clínico e 

neuroanatomista Louis Alzheimer, que observou sintomas de paranoia, sono progressivo, 

distúrbio de memória, agressão e confusão em uma mulher de 50 anos. No seu entendimento, 

baseado no conhecimento da época, ela tinha uma doença severa no seu córtex cerebral [9] 

Hoje se descreve a doença de Alzheimer (ou simplesmente, Alzheimer) como uma 

degeneração progressiva das funções cognitivas do cérebro que avança em três estágios: leve, 

moderado e grave. Tipicamente a doença se caracteriza por uma perda de memória suave (leve 

ou mild), podendo evoluir para uma necessidade de cuidados especiais (moderado ou 

moderate), até o total declínio das faculdades mentais e físicas (grave ou severe) e culminando 

em sua morte [10] [11] [12]. Causado pela perda dos neurônios e de suas conexões, dentre 

outras alterações patológicas, o Alzheimer ainda é de difícil detecção e ainda não possui um 

tratamento efetivo [13] [14] [15]. 

O Alzheimer afeta mais de 24 milhões de pessoas no mundo desde 2011 e só no Brasil 

estima-se cerca de 1 milhão de pessoas [16] e, até o momento, o melhor método para retardá-
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lo é a sua detecção e tratamento precoce [15] [17] e, devido a isso, o uso de MRI é um 

procedimento integral nas avaliações clínicas de pacientes com suspeita de Alzheimer [8]. 

Inspirado pelo funcionamento das células neurais do cérebro humano, em 1943 foi 

introduzido o primeiro modelo de neurônio artificial por Warren McCullock e Warren Pitts [18] 

[19] [20]. Essa ideia e de muitas outras, como o de Hebb [21], Rosenblatt [22] e McClelland e 

Rumelhart [23], culminou e despertou o interesse de uma nova subárea da inteligência artificial 

chamada de Redes Neurais Artificiais. As Redes Neurais Artificiais (ANN, do inglês Artificial 

Neural Network), objeto de estudo dessa nova subárea, é um modelo matemático que, de forma 

muito simplificada, é capaz de “aprender” padrões de um conjunto de dados [19]. 

Devido a essa capacidade de extrair padrões, as ANN têm exercido uma função 

fundamental na medicina [24], como na detecção e classificação de patologias. Dentre essas 

aplicações, entra em destaque a análise e tratamento de imagens médicas, como imagens de 

raio-X, de tomografias computadorizadas (CT scan, do inglês, Computed tomography scan), de 

exame PET (do inglês, Positron emission tomography) e de MRI. 

As arquiteturas de ANN comumentemente utilizadas para resolver problemas de análise 

e tratamento de imagens médicas são as redes neurais convolucionais (CNN, do inglês 

Convolutional Neural Network), que extraem características (features) através do 

encadeamento de filtros convolucionais e processam essas características para a produção do 

resultado final [24]. 

Após a breve explicação sobre a importância do MRI na detecção do Alzheimer e o 

poder das ANN, foi proposto um projeto que aplica técnicas de CNN para detecção da doença 

a partir de imagens de ressonância magnética do cérebro. Com esse estudo, diferentes 

arquiteturas de CNN foram avaliadas e os resultados obtidos comparados a desempenho na 

literatura. 

1.2 Justificativa e motivação 

O tratamento precoce ainda é a melhor forma de combate ao Alzheimer, uma vez que 

pode-se retardar os efeitos degenerativos irreversíveis da doença, prolongando a saúde mental 

do paciente e reduzindo a sobrecarga nos seus cuidadores, geralmente papel ocupado por algum 

familiar [25] [26]. 

É natural que, para realizar o tratamento precoce do Alzheimer, seja necessária a sua 

detecção precoce. O usual diagnóstico clínico consiste em um resultado subjetivo que se baseia 

em informações do histórico do paciente, testes cognitivos e entrevista com familiares, por isso, 
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exige uma grande experiência do médico [17] [27]. Somado a isso, em fases iniciais, é difícil a 

distinção entre o Alzheimer e problemas relacionados com a idade, estresse ou outro distúrbio 

cerebral [17] [27]. Para ilustrar essa dificuldade da detecção, um estudo realizado em 

Cambridge mostra que neuropatologistas interpretaram 76% dos cérebros cognitivamente 

intactos com casos de Alzheimer quando fornecidos com dados clínicos de pacientes idosos 

[15]. 

Imagens de ressonância magnética (ou imagens de MR) provêm uma informação 

adicional para uma melhor acuidade diagnóstica da doença, mas ainda sofre de algumas 

limitações, por exemplo, dependem enormemente da experiência do examinador [28].  

Um método para se analisar essas imagens é através de CNN. Esse algoritmo, após a 

extração de padrões de diversas imagens de MR do cérebro de pacientes com e sem Alzheimer, 

possibilitaria a detecção da doença e também do seu estágio. O poder da CNN é tal que ela não 

só poderia extrair características como o conhecido atrofiamento do hipocampo e do córtex, 

mas também de outras regiões do cérebro em que ainda não temos evidências que contenham 

informações sobre a doença [28]. 

Por fim, a CNN é uma ferramenta rápida, eficiente e objetiva que auxiliaria o médico 

no diagnóstico final do paciente. 

1.3 Questões de pesquisa e objetivos 

Neste trabalho espera-se criar uma CNN que tem como entrada a imagem de MR do 

cérebro de uma paciente e gera como saída uma das seguintes classificações: sem traços (Non 

Demented), muito leve (Very Mild Demented), leve (Mild Demented) ou moderado (Moderate 

Demented). A aplicação e também o treinamento supervisionado farão uso de imagens de MRI 

de cérebros rotulados disponíveis em [29]. 

Dado esse objetivo geral, a seguinte questão de pesquisa surge e que ajudará a guiar o 

desenvolvimento desse projeto: 

“Qual algoritmo produz o melhor resultado na classificação do conjunto de imagens de 

Alzheimer?” 

Diante desta questão, alguns objetivos específicos foram definidos: 

 Avaliar arquiteturas e técnicas na literatura que contribuam na melhora do 

desempenho na classificação das imagens de MR; 

 Criar um linha de base para comparar o resultado obtido. 

E com isso, espera-se que o algoritmo traga os benefícios mencionados. 
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2 REVISÃO BIBLIOGRÁFICA 

2.1 Doença de Alzheimer 

A doença de Alzheimer é um distúrbio neurodegenerativo irreversível acometida 

primordialmente em idosos e é caracterizada pela progressiva perda de memória e raciocínio. 

O Alzheimer é também a causa principal da demência, constituindo cerca de 60 a 80% dos 

casos, e a hipótese mais bem aceitas que o define é o acúmulo do peptídeo beta-amiloide (Aβ) 

e de tranças neurofibrilares de proteína tau (NFT, do inglês, Neurofibrillary tangles) [31] [32]. 

Uma imagem mostrando os níveis dessas proteínas no cérebro de um paciente saudável e um 

com Alzheimer é mostrado na Figura 1. 

Figura 1 – Imagens do cérebro obtidas através do exame PET. Na parte superior se tem cérebros de 

pacientes saudáveis e na inferior com sintomas leves de Alzheimer. Do lado esquerdo, estão os níveis 

de beta-amiloide e do lado direito da proteína tau 

 

Fonte: [33]. 

A neurotoxina Aβ é gerada pela quebra proteica da sequência chamada de proteína 

precursora de amiloide, conhecida por APP (do inglês, Amyloid Precursor Protein). O APP é 

uma membrana glicoproteica que tem um papel importante em uma variedade de atividades 
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biológicas, como desenvolvimento neuronal, envio de sinais e transporte intracelular e é 

constituinte de um grande número de neurônios. A razão do depósito do peptídeo Aβ no cérebro 

de idosos, especialmente na região do hipocampo e córtex entorrinal, é ainda desconhecido [34] 

[35] [36]. 

A proteína tau tem por função de dar forma e estabilidade aos microtúbulos neurais, mas 

que em pacientes que sofrem de Alzheimer ela se acumula de forma anormal, formando um 

emaranhado que chamamos de NFT. Esse emaranhado não só compromete a estabilidade dos 

microtúbulos, mas também leva ao colapso de todo o neurônio que tem seus neurotransmissores 

comprometidos e param de funcionar [37] [38]. 

Estudos em organismos mais simples mostram que o Alzheimer, quando detectado em 

fases iniciais, pode ser parado, postergado ou mesmo revertido, levando a um esperança no 

combate à doença. Para isso, é preciso de biomarcadores eficientes que possam indicar a 

presença do distúrbio. A medição dos níveis das proteínas Aβ e tau no fluido cefalorraquidiano 

(CSF, do inglês Cerebrospinal fluid) e a detecção através de imagens do cérebro são dois 

biomarcadores importantes e estudados da doença de Alzheimer [39] [40] [41].  

2.2 Imagem de ressonância magnética 

O MRI é um exame de imagem não invasivo capaz de mostrar com definição as 

estruturas internas dos órgãos, sendo importante para detectar, diagnosticar e monitorar o 

tratamento de doenças com a maior brevidade possível, a fim de mitigar ou eliminar os agravos 

destas. Dada a alta capacidade de diferenciar tecidos, o espectro de aplicações se estende a todas 

as partes do corpo humano e explora aspectos anatômicos e funcionais [42] [43]. 

Para o exame, utiliza-se uma grande máquina (scanners de MRI), que produz pulso de 

campo magnético capaz de provocar o alinhamento (ou magnetização) dos prótons de 

hidrogênio. Com o fim do pulso, há o retorno do vetor de magnetização desses prótons, em um 

processo chamado relaxação, e consequente geração de um sinal de radiofrequência. E através 

de uma sequência de pulsos e leitura por uma antena receptora é feita a aquisição da imagem 

do corpo humano [42] [43]. 

As imagens produzidas através da MRI se apresentam em uma escala que varia do 

branco ao preto, como os cérebros da Figura 2. Os sinais de muita intensidade apresentam-se 

na cor branca, já os sinais de baixa intensidade apresentam-se na cor preta, sinais intermediários 

são vistos em escala de cinza. Essas tonalidades representam os mais variados tecidos do corpo, 

por exemplo, o tecido adiposo fornece o sinal mais intenso devido à interação dos átomos de 
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hidrogênio presentes nos ácidos graxos, enquanto que o tecido ósseo não apresenta sinal [42] 

[43]. 

Figura 2 - Imagens de ressonância magnética do cérebro de um voluntário usando um scanner de 3 

teslas (esquerda) e um de 9,4 teslas (direita) 

 

Fonte: [44] 

2.3 Redes neurais artificiais 

O neurônio biológico é uma célula que recebe sinais bioquímicos através de uma rede 

de fibras nervosas chamada de dendritos. Esses sinais podem aumentar ou reduzir o potencial 

elétrico da do corpo celular que, se atingido certo limiar, dispara um sinal pelo seu axônio [45]. 

Analogamente ao dendrito, corpo celular e axônio da célula nervosa biológica, como 

ilustrado na Figura 3, o neurônio artificial, elementos básicos de uma rede neural artificial, 

possui entrada, função de ativação e saída. Esses neurônios artificiais (ou simplesmente 

neurônios ou nós) fazem a soma ponderada de sua entrada e o resultado é avaliado em uma 

função de ativação antes de ser enviado para a saída [46]. A Figura 4 mostra uma representação 

do neurônio artificial, em que x1 a xN são as entradas, w1 a wN são os pesos, o somatório 

ponderado é mostrado dentro do círculo e a função de ativação no retângulo. 
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Figura 3 – Modelo representativo de um neurônio biológico em que se pode ver os dendritos, corpo 

celular e axônio. Uma seta indica a direção em que o sinal é transmitido 

 

Fonte: [47]  

Figura 4 - Representação de um neurônio artificial. A saída é o resultado do somatório ponderado das 

entradas passando por uma função de ativação, que no caso, é a função sigmóide 

 

Fonte: [46] 

A respeito da função de ativação, ela confere a não linearidade ao modelo, permitindo 

assim com que os complexos padrões existentes no mundo real possam ser aprendidos [48]. As 

funções de ativação mais utilizadas são: sigmóide, tangente hiperbólica e a ReLU (do inglês, 

Rectified Linear Unit) [74]. 

 

Assim como denominado por Rosenblatt [21], esse modelo inspirado no neurônio 

biológico é o perceptron, embora o termo “neurônio” também seja usado de forma 
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intercambiável. A organização desses perceptrons (ou neurônios) em camadas, contendo uma 

de entrada, uma ou mais escondida e uma de saída, como ilustrado na Figura 5, é o que 

denominamos redes neurais artificiais ou MLP (do inglês, Multilayer Perceptron). Essas 

camadas são conectadas umas às outras de forma que a saída de todos os neurônios de uma 

camada é conectada a todas as entradas dos neurônios da camada adjacente seguinte. 

Figura 5 - Representação de uma rede neural artificial em que é mostrado a camada de entrada (em 

azul escuro do lado esquerdo) as camadas escondidas (em turquesa no centro) e a camada de saída (em 

azul claro no lado direito) 

 

Fonte: [49] 

Na MPL, os dados externos são inseridos na camada de entrada e o resultado é produzido 

na camada de saída. Entretanto, para que esse resultado seja satisfatório para aplicação o qual 

a MLP foi projetada é necessário que a arquitetura e os pesos das somas ponderadas estejam 

ajustados.  

Em uma MLP, o número de camadas escondidas e número de neurônios em cada uma 

delas, bem como a função de ativação utilizada são definidos pelo projetista, que deve utilizar 

do seu conhecimento do problema, da sua experiência e de testes realizados para a decisão [50]. 

Em tarefas de classificação a MLP possui uma camada final chamada de softmax. O 

softmax indica a probabilidade do resultado da MLP de ser de uma determinada classe e, para 
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isso, conta com 1 neurônio para cada uma das possíveis classificações da tarefa. Cada um desses 

neurônios possui valores não negativos e a soma de todos eles é 1, logo, a classe resultante é 

aquela cujo neurônio apresenta o maior resultado (ou maior probabilidade) [51]. 

2.3.1 Treinamento e teste de uma rede neural artificial 

Os pesos das somas ponderadas dos neurônios são ajustados em um processo chamado 

de treinamento (ou aprendizado), o qual se usa um algoritmo chamado backpropagation. 

Durante o treinamento é apresentado a MLP um conjunto de dados de entrada e suas respectivas 

saídas esperadas com o intuito de “ensinar” o padrão desse conjunto [46]. Mais detalhadamente, 

para cada um dos dados do conjunto: 

 Calcula-se o resultado produzido pela MLP usando os seus pesos correntes (em 

primeiro momento, esse pesos podem ser inicializados aleatoriamente); 

 Com o resultado produzido pela MLP e o resultado esperado é calculado um 

erro usando uma função de erro ou função de custo; 

 O erro é propagado da última camada para a primeira ajustando os pesos da 

MLP através de um algoritmo chamado de gradient descent [52]. 

O gradient descent visa minimizar a função de erro indicando quais e quanto cada um 

dos diversos pesos da MLP devem ser ajustados [52]. 

Para se avaliar o resultado do treinamento, em outras palavras, o poder de generalização 

da MLP, usa-se um conjunto de dados diferente do utilizado durante o aprendizado. Esse novo 

conjunto de dados é processado pela MPL já ajustada e o resultado obtido, juntamente com o 

resultado do treinamento, é utilizado para tirar conclusões acerca da arquitetura.  

É papel do projetista, portanto, não só definir como esse treinamento e teste serão 

realizados, mas também realizar alterações no número de camadas ou neurônios para evitar 

problemas com o overfitting e o underfitting [50]. 

2.3.2 Overfitting e underfitting 

Overfitting é um problema em que a arquitetura escolhida ajusta seus pesos 

especificamente para o conjunto de dados de aprendizado, sendo incapaz de generalizar o 

problema e, portanto, incapaz de avaliar novas amostras de dados. Geralmente acontece quando 

o número de parâmetros é muito maior que o conjunto de dados. Existem algumas técnicas para 

reduzir o overfitting como o uso de regularização, dropout e uso de métodos bayesianos [46] 

[53]. 
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Underfitting, por outro lado, é quando a arquitetura não possui complexidade suficiente 

para aprender o padrão [53]. Assim como o overfitting, ela é incapaz de avaliar novas amostras 

de dados, mas também é incapaz de avaliar o próprio conjunto de treinamento [54]. Uma 

maneira de contornar o underfitting é aumentando o número de camadas ou de neurônios, ou 

seja, aumenta a complexidade da MLP. 

Uma ilustração sobre os problemas de overfitting e underfitting é apresentada na Figura 

6. 

Figura 6 – Ilustração dos problemas de underfitting e overfitting para um problema de classificação 

binária. Do lado esquerdo, há o problema de underfitting, em que a rede neural é incapaz de aprender 

o padrão. No centro, ocorreu a generalização. Do lado direito, há o problema de overfitting, em que a 

rede neural se ajusta excessivamente aos dados de treinamento. 

 

Fonte: [55] 

2.3.3 Dropout 

Assim como o título do artigo em que a técnica foi proposta [56], o dropout é uma 

maneira simples de prevenir redes neurais do overfitting. Para isso, ela conta com uma taxa que 

aleatoriamente desabilita diferentes neurônios e suas conexões durante o treinamento. A 

intuição por trás dessa técnica é impedir a co-adaptação complexa dos neurônios, fazendo com 

que eles não dependam do resultado de outros neurônios e, portanto, forçados a contribuir com 

o resultado final [56] [57]. Desta forma tendem a reduzir o valor dos pesos, assim como a 

regularização, para tornar a rede mais robusta. 

A técnica pode ser empregada com diferentes taxas para diferentes camadas e 

tipicamente não é realizada na camada de entrada e somente durante a fase de treinamento. 
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2.3.4 Métricas 

Os resultados de treinamento e teste são baseados em métricas. As métricas não só 

guiam e ajudam no desenvolvimento de uma MPL, mas também são ferramentas para 

comparação entre diferentes arquiteturas. 

Uma métrica importante é na classificação binária é acurácia, e ela representa 

porcentagem de classificações corretas [58]. É dada por: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 

 Onde: 

  TN: Verdadeiro negativo; 

  TP: Verdadeiro positivo; 

  FP: Falso positivo; 

  FN: Falso negativo. 

 

Analogamente, pode-se obter a acurácia para o caso da classificação multiclasses, assim 

como apresentado em [58] [59], ela contabiliza a porcentagem de acerto para todas as classes. 

2.3.5 Aprendizado profundo 

Aprendizado profundo ou DL (do inglês, Deep Learning) são arquiteturas que possuem 

muitas camadas [60] [61] e a MLP é um exemplo típico [62], por isso na literatura também são 

chamados de redes neurais profundas (DNN, do inglês, Deep Neural Networks). 

Esse tipo de arquitetura profunda é capaz de resolver problemas complexos e alcançar 

grandes avanços na resolução de problemas que a comunidade de inteligência artificial tem 

tentado a anos [63], contudo, o treinamento de redes profundas exige muitos dados e poder 

computacional [64] [65]. 

 

Outras dificuldades impostas pelas DL são os vanishing e exploding gradients. O 

vanishing gradient é um problema em que, conforme os pesos vão sendo ajustados das 

camadas mais para as menos profundas, o valor de ajuste (ou o gradiente) fica menor e menor 

fazendo com que os pesos das camadas iniciais fiquem praticamente inalterados e, por 

conseguinte, impedindo a convergência da DL [66]. O problema de exploding gradient, por 

outro lado, faz com que o gradiente seja acumulado ficando cada vez maior, levando a DL a 

divergir do resultado [66]. 
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2.3.6 Transferência de aprendizado 

A grande quantidade de camadas de uma DNN, se por um lado traz grandes conquistas 

na realização de tarefas complexas, por outro, traz dificuldades no treinamento. Um dos 

problemas é na aquisição de dados, pois para que a arquitetura seja capaz de extrair todas as 

características do problema a ser resolvido, ela precisa ser treinada com um grande volume de 

dados e, muitas vezes, eles são raros, caros de serem coletados ou rotulados ou simplesmente 

inacessíveis [67]. Outro problema é o custo computacional para treinar essa arquitetura, uma 

vez que algoritmos de treinamento, como o backpropagation, são lentos e milhares de 

parâmetros precisam ser ajustados. 

Neste contexto, surge a transferência de aprendizado (transfer learning). Essa técnica 

permite que se utilize arquiteturas (ou modelos) já treinados com grandes volumes de dados 

(como a ImageNet[68]) para resolver tarefas de um domínio diferente [30]. 

Para adaptar esses modelos pré-treinados para executar uma tarefa diferente, podemos 

nos concentrar em 2 métodos: por ajuste fino (fine-tuning) e por extração de características 

(feature extraction). 

O método por ajuste fino mais comum consiste em treinar o modelo pré-treinado no 

conjunto de dados da tarefa que se deseja aprender, permitindo somente a alteração dos 

parâmetros das camadas mais profundas. 

No método de extração de características, o resultado (saída) de uma camada arbitária 

do modelo pré-treinado é utilizado como entrada em uma nova arquitetura. 

Os modelos pré-treinados comumentemente utilizados em artigos científicos na 

literatura são a VGG, GoogLeNet e a ResNet [69]. 

2.3.7 Aumento de dados 

O aumento de dados (data augmentation) trata-se de um série de métodos que ampliam 

artificialmente o tamanho do conjunto de treinamento de uma DL. Além do aumento do volume 

de dados, a técnica também traz como benefício a melhoria na capacidade de generalização dos 

modelos e o combate ao desbalanceamento de classes [70]. Esses benefícios são desejados em 

problemas que possuem escassez ou diversidade insuficiente de dados, como é o caso de 

imagens médicas [71]. 

Esses métodos de aumento de dados consistem em utilizar os dados originais para 

artificialmente criar novos exemplos. Para o caso de imagens, pode se utilizar transformação 

de imagens como rotações, redimensionamento ou alteração na coloração que são técnicas 
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muito conhecidas e utilizadas na área de visão computacional [71], assim como exemplificado 

na Figura 7. 

Figura 7 – Exemplo de transformações de imagens. As colunas da esquerda para a direita mostram as 

seguintes transformações:  sem transformação, rotação, borrão, contraste, redimensionamento, 

iluminação e perspectiva 

 

Fonte: [72] 

Para acompanhar o progressivo aumento do número de parâmetros de treinamento dos 

modelos, cria-se a necessidade de conjunto de dados cada vez maiores e, por isso, aumento de 

dados passou a se tornar uma técnica fundamental e é utilizada em quase todos os modelos no 

estado da arte [73].  

2.4 Redes neurais convolucionais 

A CNN (ou ConvNets) é um tipo de ANN que tem ganhado grande destaque na última 

década, sendo uma das ferramentas mais poderosas especialmente em aplicações de visão 

computacional [74]. Esse modelo foi nomeado devido a uma operação linear matemática entre 

matrizes denotada convolução, embora, estritamente falando, a operação realizada é a 

correlação cruzada [75]. Mas, o termo convolução será mantido devido sua popularidade dentro 

da subárea. 

Limitando-se ao caso de uma convolução de duas matrizes bidimensionais finitas, uma 

vez que esse trabalho lida com classificação de imagens, podemos entender a operação como o 

processo de mover uma matriz sobre a outra (em ambas dimensões), calculando a soma dos 
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produtos ponto a ponto a fim de gerar uma terceira matriz. Podemos ver uma ilustração do 

processo na Figura 8.  

Figura 8 – Ilustração do funcionamento de uma convolução. A operação de convolução está sendo 

realizada entre a matriz a esquerda 7x7 e a matriz central 3x3, resultando na matriz a direita.  

 

Fonte: [76] 

Os blocos básicos de uma CNN são: camadas convolucionais, camadas de funções de 

ativação, camadas de pooling e camadas totalmente conectadas (FC, do inglês, fully-connected) 

[30]. 

A camada convolucional é composta por um conjunto de matrizes de pesos, chamados 

de filtros ou kernels, em que será aplicada a operação de convolução sobre a matriz de entrada.  

A intuição por trás dessa camada é permitir que o modelo busque por padrões ou combinações 

em uma vizinhança ao invés da matriz de entrada inteira, isso torna as CNN mais eficientes que 

uma ANN tradicional em problemas que envolvem imagens [74]. 

As camadas de funções de ativação, assim como em uma ANN, conferem a não 

linearidade ao modelo e são geralmente utilizadas após as camadas convolucionais ou as 

camadas FC [30]. Em CNNs a função utilizada com maior frequência é a ReLU. 

A camada de pooling são geralmente aplicadas após algumas camadas convolucionais 

e tem por finalidade fazer a redução da dimensionalidade do conjunto de matrizes. Entretanto, 
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há estudos a favor do abandono dessa camada [30]. Existem diferentes tipos como: o average-

pooling, o global average-pooling e, o mais utilizado, o max-pooling. 

A camada FC é similar a uma camada escondida de uma ANN fazendo com que todas 

as saídas da camada anterior a ela sejam conectadas a suas entradas [30]. A camada FC formam 

as últimas camadas de uma CNN e geralmente compreendem a maior parte dos parâmetros [77] 

[78]. 

2.4.1 GoogLeNet ou Inception 

Vencendo o VGGNet no desafio “ImageNet Challenge 2014” [82] esse modelo chamou 

atenção por utilizar módulos chamados de Inception [30]. Esses módulos fazem a concatenação 

do resultado de diferentes sequências de convoluções de filtros pequenos, assim como ilustrado 

na Figura 9 [30].  

Figura 9 - Módulo Inception tradicional 

 

Fonte: [83] 

De acordo com [83], essa arquitetura melhora a utilização dos recursos computacionais 

dentro da rede, permitindo um aumento da sua profundidade mantendo o custo de 

processamento constante. Mostrada na Figura 10, a GoogLeNet possui 22 camadas com 

parâmetros (27 se contar as camadas de pooling) e apresentou um erro top-5 de 6,67% [83]. 
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Figura 10 – Arquitetura do GoogLeNet. Inicia-se da esquerda para a direita e pode ser observador 

camadas convolucionais, em azul, camadas de polling, em vermelho, camadas de softmax, em 

amarelo, e outras camadas (como de concatenação e normalização), em verde. 

 

Fonte: [83] 

A GoogLeNet mais tarde recebe melhorias produzindo as arquiteturas Inception, tal 

como a Inception V3, apresentado em [82] [30]. 

2.4.2 ResNet 

A ResNet ou Residual Networks é uma rede profunda vencedora da tarefa de 

classificação da ILSVRC 2015 [84]. Possuindo de 34 a 152 camadas, e de complexidade 

inferior ao da VGGNet [84], a ResNet alcançou um erro de top-5 de 3,57% que supera o 

desempenho de um humano sobre o conjunto de imagens em que foi testado [85]. 

Sua arquitetura, ilustrada na Figura 11, foi possível devido a estruturas chamadas de 

blocos residuais (residual blocks) que conectam 2 camadas de profundidades diferentes. 

Através dessa conexão são preservadas características da camada de entrada (menos profunda) 

na camada de saída (mais profunda), por isso também é chamada de shortcut connection ou 

skipping layer. Como ilustrado na Figura 12, a skipping layer soma o vetor de características x 

ao seu valor após a transformação por uma ou mais camadas com pesos f(x), resultando em 

f(x)+x. 
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Figura 11 - Arquitetura da ResNet 34. Os blocos azuis (de diferentes tonalidades) indicam as camadas 

de convolução, os blocos amarelos, camadas de pooling e blocos laranja, camada FC. As linhas sólidas 

indicam os skipping layers, quando a entrada e saída possuem a mesma dimensão, enquanto que as 

linhas pontilhadas indicam skipping layers com pooling, quando existe a necessidade de aumentar a 

dimensão da entrada para igual à da saída. 

 

Fonte: [30] 

Figura 12 - Estrutura do residual blocks, shortcut connections ou skipping layers. Observa-se que há a 

soma do vetor de características x ao mesmo valor após a transformação por 2 camadas de pesos. 

 

Fonte: [30] 

Essa abordagem da ResNet permite que se construa arquitetura mais profundas, que 

sofrem do problema de vanishing ou exploding gradients [84]. 

2.4.3 MobileNet 

O MobileNet é uma CNN de código aberto disponibilizada pelo Google desenvolvida 

para ser utilizada em aplicações móveis e embarcadas, que tem como característica possuírem 

recursos limitados, como processamento, memória e bateria. Ela faz uso de convoluções 

separáveis por profundidade (em inglês, depthwise separable convolutions) que reduzem 

significantemente o número de parâmetros treináveis se comparado a uma CNN tradicional de 

mesma profundidade. Essa convoluções separáveis por profundidade faz a operação de 
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convolução para cada canal separadamente e depois combina seus resultados por meio de um 

filtro 1x1 que foi chamada de convolução por ponto (em inglês, pointwise convolution), assim, 

fazendo com que o modelo seja computacionalmente muito eficiente a um custo de uma 

pequena perda na acurácia se comparado a uma Inception V3, por exemplo [86] [87] [88]. A 

MobileNet pode ser vista na Figura 13. 

Figura 13 – Arquitetura da MobileNet. Pode-se observar que ela faz uso de depthwise separable 

convolutions e a pointwise convolutions para então finalizar com uma camada de global average 

pooling e um camada FC. 

 

Fonte: [87] 

2.4.4 CheXNet 

A CheXnet é uma CNN desenvolvida para detecção de pneumonia a partir de imagens 

de raio-X do tórax e apresentou níveis de acerto que excedem radiologistas. O modelo tem 

como entrada imagens de raio-X do tórax e retorna a probabilidade do paciente ter pneumonia 

juntamente, com um mapa de calor localizando a região da imagem que mais apresenta o 

indicativo da doença. Fora treinada usando o conjunto de dados ChestX-ray14 que possui 

112.120 imagens de raio-X frontais do peito, individualmente rotulado com até 14 diferentes 

tipos de doenças torácicas [89]. 

O modelo consiste em uma DenseNet [90] de 121 camadas e tem como entrada imagens 

de 224 x 224 pixels. A DenseNet é formada por dense blocks que é formada por uma camada 

de convolução, função de ativação ReLU e Batch Normalization e, diferente das arquiteturas 

convencionais, nelas cada uma das camadas recebe adicionalmente as entradas de todas as 

camadas que a precedem e propaga seu mapa de características para todas as camadas que a 

sucedem, encorajando o reuso de padrões. Uma imagem ilustrativa da dense block é apresentada 

na Figura 14. 
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Figura 14 – Represetação de uma dense block utilizada na DenseNet, modelo em que o ChexNet é 

baseado. 

 

Fonte: [90] 

2.5 Estado da arte 

Diversos são os trabalhos publicados que buscam resolver o problema de detecção da 

doença de Alzheimer a partir de imagens de MR, em especial, de pacientes nos estágios iniciais 

chamados de MCI (do inglês, Mild Cognitive Impairment) que denominamos de muito leve. 

Em [91], uma arquitetura VGG 16 pré-treinada foi utilizada para classificação binária 

entre pacientes com ou sem Alzheimer. Nesta arquitetura foi inserida uma camada final FC e 

todos os seus pesos foram retreinados usando o conjunto de imagens, que foi pré-processaoas 

através de normalização de intensidade (intensity normalization) e segmentação do crânio (skull 

strippping). Neste retreinamento, que inicia com os pesos já treinados na ImageNet, foi 

utilizado o otimizador stochastic gradient descent com o Nestrov Momentum, que, de acordo 

com os autores, é uma combinação que oferece um bom desempenho para imagens médicas, 

por facilitar a busca pelo mínimo global. O resultado de [91] foi uma acurácia de 99% sobre o 

conjunto de imagens de teste e um mapa de calor para visualização das áreas afetadas pelo 

cérebro usando o Grad-CAM [92]. 

O trabalho de [93] faz a seleção de imagens transversais de maior entropia do conjunto 

de dados OASIS-3 (do inglês, Open Access Series of Imaging Studies) [94]. Segundo os autores, 

essas imagens de maior entropia podem ser consideradas as mais informativas e que provêm 

maior robustez no treinamento, portanto, são suficientes no treinamento. Essa técnica foi 

utilizada no treinamento de duas arquiteturas pré-treinadas, a VGG 16 e a Inception V4, para a 

classificação entre pacientes com ou sem Alzheimer. Somente reajustando a última camada de 
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ambas as arquiteturas obteve-se uma acurácia média de 92,3% na VGG 16 e 96,25% na 

Inception V4 com um conjunto de treinamento de somente 5120 imagens. 

As arquiteturas LeNet e GoogLeNet foram usadas para verificação da presença ou não 

da doença de Alzheimer em [95]. Para ambos modelos de classificação, foi utilizado o conjunto 

de imagens da ADNI (do inglês, Alzheimer’s Disease Neuroimaging Initiative) e um pré-

processamento extensivo e único. Embora o desbalanceamento seja algo que pode mudar o 

resultado final, [95] mostra que os modelos são robustos suficientes, sendo quase invariante a 

esse problema. A melhor acurácia atingida foi de 98,79% para o LeNet e de 98,84% para o 

GoogLeNet. 

A AlzNet (do inglês, Alzheimer Network) é uma CNN proposta em [97] que faz a 

classificação binária de pacientes de Alzheimer através de imagens de MR. Essa arquitetura é 

composta por 5 camadas convolucionais, cada uma seguida por uma camada de max-pooling, 

uma camada FC com dropout e uma camada final com somente 1 neurônio usando função de 

ativação sigmoidal para realizar a classificação. Ela foi treinada com um total de 15200 imagens 

extraídas de 240 pacientes (170 com Alzheimer e 70 sem) presentes no banco de dados OASIS-

3 [94] e resultou em uma acurácia de 97,88% no conjunto de treinamento e 99,30% no de teste.  

Em [98] são apresentadas diversas propostas de arquiteturas para detecção da doença de 

Alzheimer utilizando o banco de imagens OASIS [94]. Essas propostas consistem basicamente 

na: BrainNet2D, BrainNet3D e ResNet18. A primeira, formada por 4 camadas convolucionais 

2D, cada uma seguida por uma camada de max-pooling 2D, e uma camada de saída, tem como 

entrada 10 fatias centrais da imagem 3D do cérebro e apresenta uma saída para todo o conjunto. 

A segunda é formada por 5 pares de camadas convolucionais 3D e de max-pooling 3D, uma 

camada de global average-pooling e uma camada de saída e, diferentemente da BrainNet2D, 

recebe como entrada a imagem 3D (176 fatias totais). A última consiste em um arquitetura pré-

treinada em que aplicado o fine-tuning e tem como entrada uma fatia (imagem) do cérebro que 

produz uma única saída. Para cada uma das propostas de [90] são apresentadas variações que 

permitem a classificação de duas (saudável e doente) e três classes (saudável, estágio leve, 

estágio avançado) e fazem uso de Batch Normalization1 e Cyclical learning rate2. Além disso, 

o trabalho faz uso da métrica acurácia balanceada (Balanced Accuracy) para lidar com o 

                                                     
1 Batch normalization é uma técnica de treinamento da rede neural profunda que padroniza as entradas para uma 

camada a cada mini-batch (mini-lote), melhorando o desempenho do modelo [98]. Mini-Batch Gradient Descent 

é uma variação do algoritmo de Gradient Descent que divide o conjunto de entrada em pequenos lotes (mini-

batches) que são utilizados na atualização dos pesos, isso traz um ganho computacional ao processo [99]. 
2  Cyclical learning rate é uma estratégia que permite a oscilação da taxa de aprendizado entre dois valores [98]. 
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problema de desbalanceamento de dados. O melhor resultado obtido foi da ResNet18 com um 

porcentagem de 93% tanto para acurácia como para a acurácia balanceada para a classificação 

binária e uma acurácia de 89% e acurácia balanceada de 88% para a classificação multiclasses. 

Uma análise da robustez de uma CNN para classificação de pacientes com e sem 

Alzheimer de imagens de MR de duas populações de etnia e nível de educação diferente é 

apresentada em [100]. Uma população é obtida da ADNI [96] em que 83,59% são caucasianos 

e a maioria possui alto nível de educação, enquanto que a outra é obtida da SNUBH (do inglês, 

Seoul National University Bundang Hospital) que possui somente coreanos e é formado 

principalmente por pessoas de nível de educação moderado. Segundo os autores, a arquitetura 

é a primeira baseada em CNN para resolver uma tarefa de classificação de Alzheimer utilizando 

imagens 2D como entrada. Essa arquitetura é constituída de uma etapa de extração de 

características usando uma Inception V4 e uma segunda etapa em que essas características são 

concatenadas com a idade, sexo e número de fatias a serem avaliadas para então serem 

classificadas por uma camada FC e uma camada softmax. Essa arquitetura foi treinada 

separadamente em cada dos banco de imagens (ADNI e SNUBH) e avaliados em cada uma 

delas, sendo que, quando treinado e testado no mesmo foi denotado como “dentro do banco de 

dados” (within-dataset) e quando treinado e testado em banco de imagens diferentes foi 

denotado “entre banco de dados” (between-dataset). Otimizado usando um batch gradient 

descent com Nesterov Momentum, o resultado foi muito próximo para o testes within-dataset 

e between-dataset, apresentando para as métricas AUC, acurácia, sensitividade e especificidade 

valores acima de 88%, 83%, 76% e 85%, respectivamente. 

Utilizando os dados da ADNI, o trabalho de [101] faz a comparação entre dois 

algoritmos na classificação de pacientes em 3 classes: saudáveis, MCI e com Alzheimer. O 

primeiro é uma CNN com 8 camadas convolucionais, 5 camadas de max-pooling, 2 camadas 

FC e 1 camada softmax. O segundo é o DML (do inglês, Deep Metric Learning) que consiste 

em um algoritmo capaz de criar uma métrica de distância que aproxima amostras do conjunto 

de dados pertencentes à mesma classe e afasta as diferentes [101]. O trabalho resultou em uma 

acurácia, sensibilidade e especificidade de 83%, 83% e 82% para o DML contra 81%, 79% e 

83% para a CNN. Além disso, mostrou-se que a DML teve uma convergência e desempenho 

computacional melhor. 

Helaly, Badawy e Haikal propõem 3 arquiteturas para a classificação da doença de 

Alzheimer em [102]. A 2D-M²IC é uma CNN que utiliza 3 camadas convolucionais seguidas 

de camadas de max-pooling, 2 camadas FC e uma camada softmax para classificar imagens 2D. 
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A 3D-M²IC é uma CNN similar a anterior, no entanto ela usa imagens 3D para sua classificação 

e, portanto, suas camadas convolucionais e de pooling possuem uma dimensão a mais. A última 

arquitetura é uma VGG 19 pré-treinada em que foi acrescentado ao final mais 4 camadas FC e 

uma softmax e foi aplicada a técnica de fine-tuning. Imagens do banco de dados ADNI [96] 

foram balanceadas e ampliadas usando a técnica de aumento de dados para serem utilizadas no 

treinamento dessas arquiteturas. As arquiteturas obtiveram uma acurácia de 93,60% para a 2D-

M²IC, 95,17% para a 3D-M²IC e 97,00% para a VGG 19 pré-treinada para a classificação das 

classes NC (do inglês, Normal Control), EMCI (do inglês, Early Mild Cognitive Impairment), 

LMCI (do inglês, Late Mild Cognitive Impairment) e AD (do inglês, Alzheimer Disease). 

Finalmente, em [103], é proposto uma arquitetura que utiliza dados da ADNI [96] para 

a classificação entre NC, MCI, EMCI, LMC e AD. Essa arquitetura é uma ResNet pré-treinada 

em que: a última camada FC foi modificada para realizar a classificação entre uma das 4 classes 

apresentadas, foi adicionada uma camada de função de ativação com dropout e todos seus pesos 

foram reajustados no processo de fine-tuning. Essa ResNet 18 modificada foi avaliada em 7 

classificações binárias (NC x AD, NC x EMCI, NC x LMCI, EMCI x LMCI, EMCI x AD, 

LMCI x AD e MCI x EMCI) com e sem a técnica de dropout e, segundo os autores, o modelo 

foi eficiente no diagnóstico precoce do Alzheimer sem qualquer falso positivo e com muito 

baixo falso negativo, resultando em uma acurácia mínima de 74,91% e máxima de 99,99% na 

configuração com a regularização. Além disso, é discutido que se observou o problema de 

overfitting, razão do uso da técnica de dropout e early stopping3.  

                                                     
3 Early stopping é um técnica de combate ao problema de overfitting que interrompe o treinamento uma vez 
que o erro de validação atinge seu valor mínimo [104]. 
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3 METODOLOGIA E DESENVOLVIMENTO 

3.1 Proposta 

A proposta desse trabalho é utilizar os dados rotulados presentes em [29] no treinamento 

de arquiteturas rasas de CNN projetadas do seu princípio a fim de obter um modelo capaz de 

classificar uma imagem de MR em: NonDemented, VeryMildDemented, MildDemented ou 

ModerateDemented. Um diagrama da configuração dessa proposta (pipeline) é mostrado na 

Figura 15. 

Figura 15 – Pipeline da proposta. No lado esquerdo, observa-se que o conjunto de dados divididos em 

treino e teste, seguido por um bloco de pré-processamento (amarelo). No centro da figura existem dois 

blocos um de rede rasa (azul), que treina um modelo CNN, e um da linha de base (verde), que treina 

um classificador utilizando extração de características. Por fim, um bloco de comparação e análise dos 

resultados. 

 

Fonte: Imagem do autor 

Neste pipeline, será obtido o conjunto de dados formado por imagens de ressonância 

magnética e já dividido em treino e teste em [29]. Ambos os subconjunto são pré-processados, 

sendo que o de treino terá uma etapa de aumento de dados antes da normalização e o de teste 

somente a normalização. Posterior ao pré-processamento, um modelo de rede rasa e de baseline 

serão treinados utilizando os dados de treinamento e avaliados com o de teste. Finalmente, o 

resultado obtido do modelo de rede rasa “from scratch” (do zero) será comparado ao resultado 

do baseline e uma análise será feita. 

 

Por esse trabalho lidar com um problema de multiclassificação, métricas como acurácia 

binária, não seriam adequadas, mas, assim como mencionado no item 2.3.3, é possível utilizar 
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métricas análogas. Por isso será utilizado a acurácia multiclasse que será referido como acurácia 

global, para diferenciar da acurácia obtida para cada classe. Para reforçar as análises serão 

apresentadas também tabelas e gráficos. 

 

Para o desenvolvimento do projeto será utilizado python em um sistema operacional 

Windows 10 utilizado um computador pessoal com a configuração apresentada na Tabela 1 e 

seu código-fonte estará disponível em ‘github.com/ishibeissao/alzheimer’. 

Tabela 1 - Configuração do hardware utilizado na execução do código utilizado no projeto 

Hardware Características 

Processador 
Intel i5-9600K Coffee Lake Refresh com 9MB de cache e 

frequência de 3.7GHz 

Placa gráfica 
NVIDIA GeForce GTX 1660 SUPER SC Ultra Gaming com 

6GB de memória dedicada 

Memória RAM 2 pentes DDR4 de 8GB com frequência de 3000MHz  

SSD 
Tipo M.2 NVMe, com taxa de leituras e gravação de 

1700Mb/s e 1550Mb/s, respectivamente 

Fonte: Tabela do autor 

Cada um dos blocos mencionados e apresentados na Figura 15 (conjunto de dados, pré-

processamento, linha de base, rede rasa “do zero” e comparação e análise dos resultados) serão 

melhor explicados nos itens seguintes. 

3.2 Conjunto de dados 

O conjunto de imagens de ressonância magnética obtido de [29] consistem em fatias 

horizontais de diferentes posições do cérebro4. Todas estão na escala de cinza, possuem 208 

pixels de altura e 176 pixels de largura e estão alinhadas e centralizadas, como mostra a Tabela 

2.  

                                                     
4 Em [105], é possível observar o formato e posição de diferentes fatias horizontais, bem como o nome das 
estruturas. 
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Tabela 2 – Exemplos de imagens de ressonância magnética para cada uma das 4 classes: 

NonDemented, VeryMildDemented, MildDemented e ModerateDemented presentes em [29]. As 

podem ser provenientes de fatias horizontais de diferentes posições do cérebro  
 Exemplo 1 Exemplo 2 Exemplo 3 Exemplo 4 Exemplo 1 
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Fonte: Tabela do autor 

Esse conjunto de dados é formado por 6400 imagens de ressonância magnética do 

cérebro, divididos em 5121 de treino e 1279 de teste, representando assim, 80% e 20% do total. 

As imagens de treino e teste são distribuídas entre as classes conforme a Figura 16. 
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Figura 16 – Distribuição das classes no conjunto de treino (5121 imagens) e no conjunto de teste 

(1279 imagens) 

 

Fonte: Imagem do autor 

Com base na Figura 16, pode se observar que as classes não são igualmente distribuídas, 

sendo que a classe NonDemented representa a metade de todo o conjunto de imagens. Essa 

característica do conjunto de dados pode prejudicar o treinamento de uma CNN, pois as classes 

minoritárias podem acabar sendo ignoradas devido a sua baixa representatividade no conjunto 

total.  

Observa-se também que a separação entre treino e teste segue a mesma distribuição, o 

que indica uma divisão apropriada dessas imagens. 

Outra característica que deve ser mencionada é a dificuldade que as diferentes fatias do 

cérebro impõem sobre o projeto, uma vez que elas possuem formatos diferentes e não há 

nenhuma indicação no conjunto de dados que identifica em qual posição do cérebro a imagem 

foi coletada. Além do mais, essa característica aumenta ainda mais a diversidade de imagens, 

que pode sugerir que o tamanho do conjunto de dados não seja grande o suficiente. 

3.3 Pré-processamento 

Neste trabalho, o pré-processamento consiste em aplicar as técnicas de aumento de 

dados e normalização no subconjunto de treino e somente a normalização no subconjunto de 

teste. 
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Embora se possa aplicar diferentes pesos durante a fase de treinamento, privilegiando 

as classes minoritárias, para reduzir o problema do desbalanceamento, o aumento de dados 

também traz o benefício de reduzir a susceptibilidade dos modelos a distorções na imagem. 

Para o aumento de dados serão utilizadas as operações de transformação nas imagem de 

treinamento apresentadas na Tabela 3. 

Tabela 3 - Operações de transformação de imagem utilizadas no aumento de dados. Na tabela também 

é apresentado a variação permitida para cada operação e um exemplo de transformação 

Operação 
Parâmetros da 

operação 

Descrição do 

exemplo 

Exemplo de 

imagem 

Sem operação Não há Imagem original 

 

Rotação 

Rotações 

permitadas: 45º, 

90º, 135º, 180º, 

225º, 270ºe  315º 

Giro de 45º no 

sentido anti-horário 

 

Redimensionamento 

Redução ou 

aumento de até 

20% do tamanho 

original 

Redução de 20% do 

tamanho original 

 

Inversão de eixo 

Inversão do eixo x, 

y ou de ambos 

eixos 

Inversão do eixo y 

 

Deslocamento 

Deslocamento de 

20 pixels tanto na 

vertical como na 

horizontal em 

ambas direções 

Deslocamento em 

10 pixels para a 

direita 

 

Alteração de 

intensidade  

Aumento ou 

redução da 

intensidade do pixel 

em até 20% 

Aumento de 20% 

do valor do pixel 

 
Fonte: Tabela do autor 
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Também na Tabela 3, foram definidas as variações possíveis de cada operação de 

transformação, por exemplo, foi definido que pode ser aplicado um deslocamento em até 20 

pixel tanto na vertical como na horizontal e em ambos sentidos. Esses valores foram definidos 

pela observação das imagens do conjunto de dados 

Tais operações também podem ser combinadas, aplicando uma após a outra de modo a 

obter uma nova transformação, por exemplo, aplicar uma rotação e um redimensionamento. 

Considerando que se pode realizar 5 tipos de operações e elas podem ser combinadas, 

sem incluir repetições ou ordem das operações, temos a Tabela 4. 

Tabela 4 - Número de transformações possíveis para 5 tipos de operações, sem considerar repetições 

ou ordem das operações. Na coluna combinações, separado por vírgulas estão todas as transformações 

possíveis e entre colchetes está a combinação de operações 

Sequência 

de 

operações 

Número de 

transformações 

possíveis 

Combinações 

1 5 [Rt], [Rd], [I], [D],[A] 

2 10 
[Rt, Rd],[Rt, I],[Rt, D],[Rt, A],[Rd, I],[Rd, D],[Rd, A],[I, 

D],[I, A],[D, A] 

3 10 
[Rt, Rd, I],[Rt, Rd, D],[Rt, Rd, A],[Rt, I, D],[Rt, I, 

A],[Rt, D, A],[Rd, I, D],[Rd, I, A],[Rd, D, A],[I, D, A] 

4 5 
[Rt, Rd, I, D],[Rt, Rd, I, A],[Rt, Rd, D, A],[Rt, I, D, 

A],[Rd, I, D, A] 

5 1 [Rt, Rd, I, D, A] 

Total 31 - 

Rt: rotação, Rd: redimensionamento, I: inversão de eixo, D: deslocamento e A: alteração de 

brilho 

Fonte: Tabela do autor 

Assim, o aumento de dados consiste em aplicar aleatoriamente uma dessas 31 operações 

de transformações em imagens do subconjunto de treino e adicioná-la ao próprio subconjunto.  

A quantidade de novas imagens a serem adicionadas deve ser de tal forma que: 

 Haja balanceamento das classes; e 

 Todas as classes tenham uma porção de imagens transformadas. 
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Desta maneira, não só se combate o problema da distribuição das classes, mencionado 

no tópico 3.2, mas também garante-se um nível de robustez a variações qualquer que seja a 

imagem.  

O número de imagens a serem produzidas pela técnica de aumento de dados é 

apresentado na Tabela 5. 

Tabela 5 – Comparação entre a quantidade esperada de dados antes e depois do aumento de dados 

Classe 
Tamanho 

original 

Imagens 

aumentadas 

Fator de 

aumento 

de dados 

Tamanho final 

(originais + 

transformadas) 

Porcentagem 

do total final 

(%) 

Non 

Demented 
2560 2816 1,1 5376 25,14 

Very Mild 

Demented 
1792 3584 2 5376 25,14 

Mild 

Demented 
717 4660 6,5 5377 25,15 

Moderate 

Demented 
52 5200 100 5252 24,57 

Total 5121 16260 4,175 21381 100 

Fonte: Tabela do autor 

Finalmente, a normalização das imagens, que é aplicada no subconjunto de treino 

aumentado e no subconjunto de teste, consiste no reescalonamento do valor dos pixel da 

imagem que varia de 0 a 255 para um valor entre 0 e 1. Para tanto, basta dividir todos os 

valores obtidos da imagem por 255. 

3.4 Linha de base (baseline) 

A linha de base ou baseline é uma referência proposta a fim de avaliar o resultado de 

um projeto. Diversas são as maneiras de se definir um baseline, uma forma simples seria 

considerar a probabilidade da classe correta ser escolhida ao acaso, assim, para um problema 
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de N classes o baseline seria 1/N. Outra maneira seria usar um resultado apresentado na 

literatura como referência. 

Assim como mostrado na Figura 15, neste projeto será utilizado como baseline o 

resultado obtido com a extração de características de um modelo pré-treinado e classificado em 

um classificador de convencional, adotado regularmente em estudos de reconhecimento de 

padrões. A escolha desse modelo pré-treinado e classificador será a combinação que apresentar 

a melhor acurácia para o conjunto de dados utilizados. A Figura 17 ilustra o processo de 

extração de características, bem como os modelos e classificadores utilizados. 

Figura 17 – Diagrama do processo de extração de características. O conjunto de dados pré-processado 

é transformado em vetores de características através dos modelos pré-treinados (extratores de 

características). Cada um dos 4 vetores de características gerado é dado como entrada para os 

classificadore. A combinação que apresentar melhor acurácia no conjunto de teste será utilizada como 

baseline 

 

Fonte: Imagem do autor 

As escolhas dos modelos pré treinados se deram da seguinte maneira: 

 O ResNet 50 e Inception V3 foram escolhidos devido a seus resultados na 

classificação do ImageNet, além de serem utilizados em muitos outros trabalhos 

da literatura. 

 O MobileNet possui a característica de ser um modelo eficiente em aplicações 

que possuem restrições de recursos computacionais como dispositivos 

embarcados [86].  

 O CheXNet é um modelo treinado para detecção de pneumonia em imagens de 

raio-X do tórax, e, devido a isso, possui maior similaridade ao conjunto de dados 

médico utilizado. [89] 

 

Os classificadores de baixo viés escolhidos foram 2 popularmente utilizados: SVM (do 

inglês, Support Vector Machine) e Random Forest. 
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A combinação desses modelos pré-treinados e classificadores produzirá 8 resultados. O 

baseline será adotado como o resultado que obtiver maior acurácia sob o conjunto de teste. 

3.5 Rede rasa “do zero” 

A rede rasa “do zero” trata-se de uma CNN criada do seu princípio, sem a utilização de 

técnicas de transferência de aprendizado ou incorporações de partes ou estruturas de outros 

modelos como blocos inception, skipping layers ou dense blocks. Assim, algumas redes 

(arquiteturas) são propostas combinando uma sequência de camadas convolucionais seguidas 

camadas de pooling, uma camada convolucionais e uma FC. A Figura 18 mostra uma 

representação gerada em Python usando a biblioteca Keras para uma rede que possui 6 pares 

de camadas convolucionais e max-pooling (6 pares convolucionais/max-pooling), seguida de 

uma camada convolucional e uma FC, que foi um dos resultados desse trabalho. 

Figura 18 – Representação da rede rasa F formada por 7 camadas convolucionais (vermelho), 6 

camadas max-pooling (verde) e 1 camada FC (azul). 

 

Fonte: Imagem do autor 

Nessa redes, as camadas convolucionais possuem 64 filtros de 3x3, stride de 1 em 

ambas dimensões, pad de 1 pixel em toda a borda e função de ativação do tipo ReLu. As 

camadas de max-pooling possuem uma janela de 2x2 com stride de 2 em ambas direções. A 

técnica de dropout pode ser empregada, caso seja necessária, com uma taxa entre 10% e 50%. 

E, camada de FC com função de softmax para 4 classes. Variando-se o números de pares 

convolucionais/max-pooling de 1 a 7 são propostas as redes A a G mostradas na Tabela 6.  
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Tabela 6 – Redes rasas “do zero” propostas. São formadas por uma sequência de camadas 

convolucionais seguidas por uma de max-pooling e, ao fim, uma camada convolucional e uma FC 

Nome 

Sequência de camadas 

convolucionais e max-

pooling 

Número de 

parâmetros 

A 1 2380484 

B 2 660228 

C 3 257860 

D 4 184964 

E 5 192964 

F 6 223748 

G 7 259396 

Fonte: Tabela do autor 

A quantidade de filtros das camadas convolucionais foram convenientemente fixadas 

em 64 filtros de acordo com algumas medidas preliminares para garantir um bom resultado 

sem o aumento demasiado do tempo de processamento, considerando as configurações de 

hardware apresentadas na Tabela 1. 

O tamanho dos filtros de 3x3 foi mantido, pois, assim como dito pelos autores da rede 

VGG, isso torna a função de decisão mais discriminativa. 

A cada camada de max-pooling de janela de 2x2, a imagem de entrada reduz sua altura 

e largura pela metade. A Tabela 7 mostra o tamanho da saída da última camada max-pooling 

para cada uma das redes rasas. 

Tabela 7 – Dimensão do vetor de características após a última camada max-pooling para cada rede 

rasa. 

Rede rasa A B C D E F G 

Pixels 104 x 88 52 x 44 26 x 22 13 x 11 6 x 5 3 x 2 1 x 1 

Fonte: Tabela do autor 

Devido a isso, uma imagem com 208 pixels de altura e 176 pixels de largura permite 

que somente 7 camadas max-pooling sejam colocadas em sequência na rede, pois, ao fim da 
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sétima camada, o vetor de características terá dimensão mínima de 1 x 1. Por isso, será 

utilizado somente 7 configurações (A a G). 

Quando utilizado, o dropout é aplicado após cada par convolucionais/max-pooling 

assim como representado na Figura 19. Essa figura é a rede rasa F com 15% de taxa de 

dropout que resultou esse trabalho. 

Figura 19 - Representação da rede rasa F com dropout de 15% formada por 7 camadas convolucionais 

(vermelho), 6 camadas max-pooling (verde) e 1 camada FC (azul). Em amarelo, estão as camadas de 

dropout do Keras e são aplicadas após cada par convolucionais/max-pooling 

 

Fonte: Imagem do autor 

Essas 7 redes rasas serão treinadas usando o otimizador Adam com as configurações 

padrão do Keras, batch size de 64 em 100 épocas. E, após treinadas, serão comparadas uma as 

outras e aquela que produzir a que obtiver maior acurácia será utilizada. 

3.6 Comparação e análise dos resultados 

O bloco final do pipeline consiste em analisar os resultados da rede rasa do “zero” com 

base no baseline. Essa análise será feita por meio da medida da acurácia multiclasse, ainda 

apontando os sucessos, dificuldades e escolhas (trade-offs). 
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4 RESULTADOS E ANÁLISE 

Os resultados obtidos de cada um dos blocos do pipeline são apresentados abaixo, bem 

como uma análise acerca deles. 

4.1   Pré-processamento de dados 

Assim, a execução do aumento de dados produziu os resultados mostrados nas Tabela 8 

e Tabela 9. 

Tabela 8 – Número de operações realizadas por imagem para cada uma das classes. O subtotal A 

indica a quantidade de imagens geradas pelo aumento de dados por classe e o subtotal B a quantidade 

de imagens produzidas por número de operações 

Número de 

operações 

Non 

Demented 

Very Mild 

Demented 

Mild 

Demented 

Moderate 

Demented 
Subtotal B 

1 567 713 884 1034 
3198 

(19,67%) 

2 540 701 934 1043 
3218 

(19,79%) 

3 588 705 928 1040 
3261 

(20,06%) 

4 565 785 900 1025 
3275 

(20,14%) 

5 556 680 1014 1058 
3308 

(20,34%) 

Subtotal A 2816 3584 4660 5200 16260 

Fonte: Tabela do autor 

Na tabela anterior é apresentado o número de imagens em que foram aplicada de 1 a 5 

operações de transformação por classe. Por exemplo, o dado presente na terceira linha e 

primeira coluna indica que 588 imagens da classe Non demented foram produzidas utilizando 

3 operações de transformação. É possível observar que o número de imagens geradas pela 

técnica de aumento de dados por classe, indicado pelo subtotal A, apresenta os mesmos valores 

da coluna “Imagens aumentadas” da Tabela 5 e o número de imagens produzidas por número 

de operações de transformações, indicado pelo subtotal B, é bem distribuído. 
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Tabela 9 – Quantidade de operações de transformação realizada pela técnica de aumento de dados por 

classe 

Operação 
Non 

Demented 

Very Mild 

Demented 

Mild 

Demented 

Moderate 

Demented 

Alteração de 

intensidade 
1710 2123 2834 3140 

Inversão de eixo 1698 2172 2815 3151 

Deslocamento 1690 2148 2830 3122 

Redimensionamento 1706 2173 2871 3127 

Rotação 1647 2154 2856 3090 

Fonte: Tabela do autor 

Na Tabela 9, é mostrada a quantidade de operações de transformações utilizadas para 

produção das 16260 imagens do aumento de dados. Nesta tabela, os valores indicam o número 

total de imagens que foram transformadas pela operação independentemente do número de 

operações realizadas, portanto, uma mesma imagem transformada usando deslocamento e 

rotação será contabilizada na linha de ambas operações. Os valores mostram que foram 

aplicados o mesmo número de operações para produção das imagens do aumento de dados, não 

havendo tendência para uma das transformações. 

Assim, os resultados da Tabela 8 e Tabela 9 sugerem que a técnica de aumento de dados 

produziu os resultados esperados no item 3.3, com o fim de combater o desbalanceamento dos 

dados e conferir robustez a variações das imagens, sem introduzir tendência ou padrões ao novo 

conjunto de treino que poderiam reduzir o desempenho dos modelos treinados. 

4.2 Linha de base (baseline) 

Assim como mostrado na Figura 17, cada um dos modelos pré-treinados gerou um vetor 

de características a partir das 21381 imagens pré-processadas (4.1). Esses vetores de 

características foram utilizados no treinamento dos classificadores SVM e Random Forest. A 
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Tabela 10 e Tabela 11 apresentam, respectivamente, o resultado para o SVM e o Random Forest 

para cada classe avaliados no conjunto de teste.  

Tabela 10 – Acurácia obtida do conjunto de teste avaliado no classificador SVM utilizando vetores de 

características extraídos por diferentes modelos pré-treinados. As 4 primeiras colunas mostram a 

acurácia para cada uma das classes e a última, uma acurácia global 

Modelo pré-treinado 
Non 

Demented 

Very Mild 

Demented 

Mild 

Demented 

Moderate 

Demented 
Global 

ResNet 50 69,06 29,02 32,96 50,00 49,80 

Inception V3 51,41 30,80 30,73 33,33 41,13 

MobileNet 59,84 26,34 19,55 33,33 42,22 

CheXNet 51,09 28,79 38,55 91,67 41,91 

Fonte: Tabela do autor 

Tabela 11 - Acurácia obtida do conjunto de teste avaliado no classificador Random Forest utilizando 

vetores de características extraídos por diferentes modelos pré-treinados. As 4 primeiras colunas 

mostram a acurácia para cada uma das classes e a última, uma acurácia global 

Modelo pré-

treinado 

Non 

Demented 

Very Mild 

Demented 

Mild 

Demented 

Moderate 

Demented 
Global 

ResNet 50 63,12 41,52 16,20 8,33 48,48 

Inception V3 70,47 29,91 23,46 0,00 49,02 

MobileNet 43,12 21,43 17,88 16,67 31,74 

CheXNet 32,34 66,74 31,84 8,33 44,10 

Fonte: Tabela do autor 

Pelos resultados, observa-se que metade dos modelos pré-treinados apresentaram 

melhor desempenho com o SVM e metade com o Random Forest, sendo que o primeiro foi 

ligeiramente melhor com média de acurácia global de 43,77% contra 43,34%, além de obter a 

melhor acurácia com a ResNet50 de 49,80%.  

Outro ponto a ser observado é o padrão de acurácia das classes, enquanto que o SVM 

possui maiores taxas de acerto para as os estágios extremos da doença (Non Demented e 

Moderate Demented), o Random Forest apresenta uma queda conforme os estágios avançam. 
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Se considerarmos o valor mínimo de acurácia entre as classes para ambos os 

classificadores, assim como mostrado na Tabela 12, observamos que o Random Forest sempre 

possui o menor valor, chegando a 0% para o Inception V3. 

Tabela 12 – Valor mínimo de acurácia entre as classes para cada classificador e modelo pré-treinado. 

Juntamente com o valor mínimo está a classe associada 

Modelo pré-treinado SVM Random Forest 

ResNet 50 29,02 (Very Mild Demented) 8,33 (Moderate Demented) 

Inception V3 30,73 (Mild Demented) 0,00 (Moderate Demented) 

MobileNet 19,55 (Mild Demented) 16,67 (Moderate Demented) 

CheXNet 28,79 (Very Mild Demented) 8,33 (Moderate Demented) 

Fonte: Tabela do autor 

Embora a acurácia global seja uma métrica que facilite a comparação entre modelos, 

pois representa a taxa de acerto geral, é importante que seja verificado as acurácias por classes 

para que garantir que nenhuma classe está sendo desfavorecida. Por conseguinte, foi decidido 

optar pela combinação de modelo pré-treinado e classificador ResNet 50 e SVM com 49,80%, 

não só por ter resultado na maior acurácia global, mas também por possuir um equilíbrio entre 

a acurácia das classes. 

A fim de fazer uma melhor análise do baseline são mostrados gráficos apresentando a 

porcentagem de classe predita para cada classe real tanto do conjunto de treino (Figura 20) 

como do conjunto de teste (Figura 21).  
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Figura 20 - Porcentagem predita de cada classe (legenda) para cada classe real (eixo x) do modelo 

baseline (ResNet 50 e SVM) avaliado no conjunto de treino 

 

Fonte: Imagem do autor 

Figura 21 – Porcentagem predita de cada classe (legenda) para cada classe real (eixo x) do modelo 

baseline (ResNet 50 e SVM) avaliado no conjunto de teste 

 

Fonte: Imagem do autor 
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Os resultados de acurácia do baseline foram acima de 25%, portanto, maior que uma 

seleção aleatória. Entretanto, evidencia-se também a dificuldade imposta pelo conjunto de 

dados na separação entre as classes intermediárias Very Mild Demented e Mild Demented. A 

primeira possui uma acurácia inferior a 50% no conjunto de treinamento e não é a classe 

majoritária no conjunto de teste, podendo levar a diversos diagnósticos falso-negativos para a 

doença. A segunda não atinge 50% de acurácia no conjunto de teste e ainda pode levar a quase 

30% de resultados falso-negativos para a doença. Isso reforça a dificuldade existente de 

detecção da doença. 

4.3 Rede rasa “do zero” 

É mostrado na Figura 22 o gráfico da perda por época para cada uma das redes rasas 

propostas e nas Tabela 13 e Tabela 14 os resultados de acurácia para os conjuntos de treino e 

teste para cada uma delas. 

Figura 22 – Gráfico da perda por época durante o treinamento das redes rasas sem dropout 

 

Fonte: Imagem do autor 
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Tabela 13 - Acurácia obtida do conjunto de treino para cada rede rasa proposta. As 4 primeiras colunas 

mostram a acurácia para cada um das classes e a última, uma acurácia global. Para o treinamento 

foram utilizadas as imagens com aumento de dados e regularização e não foi aplicado a técnica de 

dropout 

Rede rasa 
Non 

Demented 

Very Mild 

Demented 

Mild 

Demented 

Moderate 

Demented 
Global 

A 100,00 100,00 100,00 100,00 100,00 

B 100,00 100,00 100,00 100,00 100,00 

C 100,00 100,00 100,00 100,00 100,00 

D 100,00 100,00 100,00 100,00 100,00 

E 100,00 100,00 100,00 100,00 100,00 

F 99,96 97,17 98,33 99,89 98,83 

G 99,70 98,75 99,52 99,98 99,49 

Fonte: Tabela do autor 

Tabela 14 – Acurácia obtida do conjunto de teste para cada rede rasa proposta. As 4 primeiras colunas 

mostram a acurácia para cada um das classes e a última, uma acurácia global. Para o treinamento 

foram utilizadas as imagens com aumento de dados e regularização e não foi aplicado a técnica de 

dropout 

Rede rasa 
Non 

Demented 

Very Mild 

Demented 

Mild 

Demented 

Moderate 

Demented 
Global 

A 71,41 43,97 53,07 75,00 59,27 

B 80,62 51,56 50,84 50,00 65,99 

C 72,50 62,05 49,16 41,67 65,29 

D 73,75 76,12 39,11 58,33 69,59 

E 80,16 57,14 63,69 75,00 69,74 

F 86,09 53,35 56,98 75,00 70,45 

G 83,75 52,01 62,57 25,00 69,12 

Fonte: Tabela do autor 

O gráfico de perda indica que houve convergência durante o treinamento e o resultado 

obtido mostra uma alta acurácia para no conjunto de treinamento em relação ao conjunto de 

teste, indicando que possivelmente há um problema de overfitting. 

Assim, foi implementado a técnica de dropout com taxas de 10%, 25% e 50% nas 

diferentes redes. Os resultados estão apresentados na Figura 23. 
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Figura 23 – Gráfico que mostra a acurácia global pela taxa de dropout para as redes rasas propostas 

usando o conjunto de teste. Em preto, a melhor acurácia obtida entre as redes rasas sem dropout (rede 

rasa F) no conjunto de teste 

 

Fonte: Imagem do autor 

Observou-se que há uma melhora na acurácia de algumas redes quando é empregada a 

técnica de dropout. Nota-se também que essa técnica prejudica as redes com menos camadas, 

pois nessas redes a desativação de um neurônio afeta demasiadamente a sua capacidade de 

classificação. 

Os valores de acurácia apresentados apontam que a rede F com dropout de 25% é aquela 

com o melhor desempenho. No entanto, devido ao número de valores de taxa de dropout 

avaliados e a curva da Figura 23 é de se supor que haja uma taxa que maximize a acurácia da 

rede F. Por isso, é feito uma varredura por diferentes taxa de dropout para a rede F. A Tabela 

15 mostra a acurácia global da rede F com a taxa de dropout variando de 10% a 40% com 

passos de 5%. 
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Tabela 15 – Acurácia global do conjunto de treino e de teste da rede F para diferentes taxa de dropout 

Taxa de 

dropout (%) 

Acurácia 

Treino (%) 

Acurácia 

Teste (%) 

10 99,69 75,06 

15 99,49 78,50 

20 98,42 76,08 

25 96,02 76,70 

30 89,78 74,20 

35 87,12 71,38 

40 81,65 67,94 

Fonte: Tabela do autor 

A melhor acurácia obtida foi com a taxa de dropout foi de 15%. A fim de melhor 

apresentar essa rede é apresentado na Tabela 16, não só a acurácia global, mas também a 

acurácia por classes obtida do conjunto de treinamento e de teste. 

Tabela 16- Acurácia da rede F com dropout de 15% avaliado no conjunto de teste e de treino. As 4 

primeiras colunas mostram a acurácia para cada um das classes e a última, uma acurácia global 

 
Non 

Demented 

Very Mild 

Demented 

Mild 

Demented 

Moderate 

Demented 
Global 

Treino 99,76 98,96 99,24 100,00 99,49 

Teste 89,06 66,96 69,83 75,00 78,50 

Fonte: Tabela do autor 

Com isso, são apresentadas as curvas de perda e de acurácia em função da época obtidas 

durante o treinamento na Figura 24. 
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Figura 24 – Gráfico da perda (esquerda, laranja) e acurácia (direita, azul) em função da época durante 

o treinamento da rede F com dropout de 15% 

 

Fonte: Imagem do autor 

 Pode-se observar que houve uma queda na curva de perda da mesma maneira em que 

houve um aumento na acurácia, tal como esperado em um treinamento sem problemas de 

convergência.  

 Similarmente a rede rasa F sem dropout, a acurácia do conjunto de treino foi acima de 

98%. Para o conjunto de teste são apresentadas as porcentagens de classe predita para cada 

classe real na Figura 25. 



57 
 
 
 
Figura 25 - Porcentagem predita de cada classe (legenda) para cada classe real (eixo x) da rede F com 

dropout de 15% avaliado no conjunto de teste 

 

Fonte: Imagem do autor 

Através de todos esses resultados, é possível dizer que a técnica de dropout aumentou a 

acurácia de rede rasa F em 8,05%. Nesta rede rasa escolhida acurácia obtida do conjunto de 

treinamento é 21% maior do que no de teste, o que pode indicar ainda certo grau de overfitting. 

Outro ponto observado é a maior dificuldade da rede de classificar as classes 

intermediárias (Very Mild Demented e Mild Demented). 

4.4 Comparação e análise dos resultados 

Tendo sido treinados e avaliados com o mesmo conjunto de dados pré-processados, o 

modelo baseline e de rede rasa tem seus resultados comparados na Figura 26. 
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Figura 26 - Comparação entre acurácia global e de cada classe do modelo baseline e da rede rasa F 

com dropout de 15% 

 

Fonte: Imagem do autor 

  Esse resultado mostra que não só a rede rasa obteve maior acurácia global que o 

baseline, mas também a supera em cada uma das classes. Logo, foi possível projetar uma rede 

rasa criada do seu princípio com resultado superior à referência estabelecida. 

Tal como evidenciado anteriormente, as classes intermediárias da doença (Very Mild 

Demented e Mild Demented) possuem uma menor acurácia.  Com o propósito de identificar as 

causas dessa dificuldade será feito um treinamento de uma rede rasa similar a rede escolhida, 

mas para um problema de classificação binária. Tal rede, que será denotada “rede rasa binária”, 

terá todas as camadas da rede rasa F (sem dropout) com exceção da última que será substituída 

por camada de softmax com somente 2 neurônios. O seu treinamento será realizado com o 

mesmo conjunto de dados apresentado em 3.2 - Conjunto de dados, mas somente com 2 classes 

e com os mesmos parâmetros tal como descrito em 3.5 - Rede rasa “do zero”. O resultado é 

mostrado na Tabela 17. 
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Tabela 17 - Acurácia da rede rasa F modificada para um problema de classificação binária. A 

avaliação foi realizada sobre o conjunto de testes para todas as combinações de classes  

 
Very Mild 

Demented 

Mild 

Demented 

Moderate 

Demented 

Non 

Demented 
74,54 86,81 95,29 

Very Mild 

Demented 
- 80,22 97,17 

Mild 

Demented 
- - 93,72 

Fonte: Tabela do autor 

A classificação binária das classes Non Demented x Very Mild Demented e Very Mild 

Demented x Mild Demented apresentaram as mesmas dificuldades observadas com rede rasa F 

com dropout de 15% da classificação multiclasses, indicando que é um obstáculo inerente do 

problema. Essa análise vai de encontro com a mesma dificuldade existente quando médicos 

tentam realizar a leitura das imagens de MR na detecção da doença. 

 

Finalmente, os testes foram conduzidos de forma que o tempo de execução do 

treinamento de cada uma das redes (usando um computador com a configuração da Tabela 1) 

fosse o suficiente para a viabilidade do projeto considerando prazos, metas e qualidade do 

resultado. 
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5 CONCLUSÕES 

Através do estudo de arquiteturas e técnicas na literatura combinado com diversos testes 

e análises foi possível obter uma rede rasa capaz de atingir uma acurácia de 78,5% na 

classificação de imagens de ressonância magnética do cérebro em: sadio ou em um dos 3 

estágios da doença de Alzheimer. 

O aumento de dados não só proporcionou uma maior robustez da rede, mas também 

mitigou o problema do desbalanceamento de classes que existia no conjunto de treinamento. 

Um indicativo desse último resultado foi sua capacidade de obter um bom valor de acurácia 

para todas as classes e não se ajustando somente para a classe majoritária (Non Demented). 

A utilização do dropout propiciou um aumento de 8,05% da acurácia da rede rasa F, já 

que esta apresentava sinais de overfitting (alta taxa de acerto no conjunto de treinamento e baixa 

taxa de acerto no conjunto de teste). Notou-se que a introdução do dropout, da maneira como 

foi realizada, reduziu o desempenho de redes com poucas camadas. 

A fim de avaliar a rede rasa obtida, foi criado um baseline para referência. Esse baseline 

simplesmente consistiu em modelo SVM treinado com vetor de características extraído do 

conjunto de dados através do modelo ResNet-50. A comparação resultou em uma acurácia 

28,7% maior para a rede rasa, indicando que sua configuração e treinamento foram satisfatórios. 

Um ponto evidenciado é a menor acurácia obtida não só pela rede rasa, mas também 

pelo baseline, em classificar os dois estágios mais leves da doença. No entanto, testes 

mostraram que mesmo reduzindo o problema para uma classificação binária, houve dificuldade 

em separar essas classes adjacentes (Non Demented x Very Mild Demented e Very Mild 

Demented x Mild Demented) e isso também é corroborado pela dificuldade da identificação do 

Alzheimer por médicos durantes seus estágios iniciais.  

 

 Um próximo passo desse trabalho seria aplicar uma técnica de autosupervisão (ou no 

inglês, self supervision) para treinamento da rede dado que o conjunto de dados é limitado, 

característica comum entre os dados do domínio médico. Para isso, seria necessário treinar a 

rede para um outro propósito, fazendo com que o peso da rede sejam inicializados, para depois, 

fazer seu o refinamento (fine tuning). Sob essa mesma linha de raciocínio, poderia se utilizar 

um autoencoder. 

Outra ideia é utilizar o fato das imagens consistem de diferentes fatias de ressonância 

magnética do cérebro, o que impõem um maior nível de complexidade ao problema, e agrupá-

los em conjunto de dados nas diferentes fatias para o treinamento mais eficiente da rede. 
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Concluindo, visto que um dos maiores aliados no tratamento da doença de Alzheimer é 

sua detecção precoce, uma vez que ela é incurável até o presente momento, uma rede capaz de 

detectar a doença através de uma imagem de ressonância magnética com mais de 78% de acerto 

é uma grande ferramenta para o combate desse mal que aflige milhares de pessoas ao redor do 

mundo. 
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